If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36000000=2x^2+8
We move all terms to the left:
36000000-(2x^2+8)=0
We get rid of parentheses
-2x^2-8+36000000=0
We add all the numbers together, and all the variables
-2x^2+35999992=0
a = -2; b = 0; c = +35999992;
Δ = b2-4ac
Δ = 02-4·(-2)·35999992
Δ = 287999936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{287999936}=\sqrt{64*4499999}=\sqrt{64}*\sqrt{4499999}=8\sqrt{4499999}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{4499999}}{2*-2}=\frac{0-8\sqrt{4499999}}{-4} =-\frac{8\sqrt{4499999}}{-4} =-\frac{2\sqrt{4499999}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{4499999}}{2*-2}=\frac{0+8\sqrt{4499999}}{-4} =\frac{8\sqrt{4499999}}{-4} =\frac{2\sqrt{4499999}}{-1} $
| 5x+13+3x+33=64 | | 8x-3+16=9x+15+3x | | 2b+8-5b+3=(-13)+8b-5 | | 8/t+t2;t=4 | | 216^x=6^x+^10. | | 4x-10=3x-13 | | 8x+.3=17 | | -x+5x+36=0 | | 271=163-w | | 5x+13+3x+33=49 | | 3x+90=1/0 | | y^2-14y+31=0 | | 8=-3k-1 | | 12x+16-3x=14x-32 | | -76=-31x-14 | | 5x+13+3x+33=54 | | 0.02(x-8)=100 | | 68-x=236 | | 0.9y=3.6 | | 3x^2+19x+90.25=40.25 | | 14x(12)+12=180 | | -3.8t+4=4.4t | | 38-w=265 | | 2x+7=-3x+18 | | (8x+5)°=(12x-12)° | | 4x+16=9x-24 | | 90=6t^2-48t | | x+7=3x-7-10 | | (2-v)(3v+7)=0 | | 10p-4=6p+16 | | -5(4x-6)=190 | | 3(6x+8)=-5x-22 |